707 research outputs found

    Analytical Studies on a Modified Nagel-Schreckenberg Model with the Fukui-Ishibashi Acceleration Rule

    Full text link
    We propose and study a one-dimensional traffic flow cellular automaton model of high-speed vehicles with the Fukui-Ishibashi-type (FI) acceleration rule for all cars, and the Nagel-Schreckenberg-type (NS) stochastic delay mechanism. By using the car-oriented mean field theory, we obtain analytically the fundamental diagrams of the average speed and vehicle flux depending on the vehicle density and stochastic delay probability. Our theoretical results, which may contribute to the exact analytical theory of the NS model, are in excellent agreement with numerical simulations.Comment: 3 pages previous; now 4 pages 2 eps figure

    Integrating static and dynamic information for routing traffic

    Get PDF
    The efficiency of traffic routing on complex networks can be reflected by two key measurements i.e. the system capacity and the average data packets travel time. In this paper, we propose a mixing routing strategy by integrating local static and dynamic information for enhancing the efficiency of traffic on scale-free networks. The strategy is governed by a single parameter. Simulation results show that there exists a optimal parameter value by considering both maximizing the network capacity and reducing the packet travel time. Comparing with the strategy by adopting exclusive local static information, the new strategy shows its advantages in improving the efficiency of the system. The detailed analysis of the mixing strategy is provided. This work suggests that how to effectively utilize the larger degree nodes plays the key role in the scale-free traffic systems.Comment: 5 pages, 5 figure

    Vortex-Antivortex Lattices in a Holographic Superconductor

    Full text link
    We employ the Einstein-Abelian-Higgs theory to investigate the structure of vortex-antivortex lattices within a superconductor driven by spatial periodic magnetic fields. By adjusting the parameters of the external magnetic field, including the period (T\mathcal{T}) and the amplitude (B0B_0), various distinct vortex states emerge. These states encompass the Wigner crystallization state, the vortex cluster state, and the suppressed state. Additionally, we present a comprehensive phase diagram to demarcate the specific regions where these structures emerge, contributing to our understanding of superconductivity in complex magnetic environments

    Giant vortex in a fast rotating holographic superfluid

    Full text link
    In a holographic superfluid disk, when the rotational velocity is large enough, we find a giant vortex will form in the center of the system by merging several single charge vortices at some specific rotational velocity, with a phase stratification phenomenon for the order parameter. The formation of a giant vortex can be explained as there is not enough space for a standard vortex lattice. Keep increasing the rotational velocity the giant vortex will disappear and there will be an appearance of a superfluid ring. In the giant vortex region, the number of vortices measured from winding number and rotational velocity always satisfies the linear Feynman relation. However, when the superfluid ring starts to appear, the number of vortices in the disk will decrease though the rotational velocity is increasing, where most of the order parameter is suppressed

    Efficient routing on scale-free networks based on local information

    Full text link
    In this letter, we propose a new routing strategy with a single free parameter α\alpha only based on local information of network topology. In order to maximize the packets handling capacity of underlying structure that can be measured by the critical point of continuous phase transition from free flow to congestion, the optimal value of α\alpha is sought out. By investigating the distributions of queue length on each node in free state, we give an explanation why the delivering capacity of the network can be enhanced by choosing the optimal α\alpha. Furthermore, dynamic properties right after the critical point are also studied. Interestingly, it is found that although the system enters the congestion state, it still possesses partial delivering capability which do not depend on α\alpha. This phenomenon suggests that the capacity of the network can be enhanced by increasing the forwarding ability of small important nodes which bear severe congestion.Comment: 4 pages, 7 figure

    ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model

    Full text link
    The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry, including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially, equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and treatment, which indicates a promising avenue for clinical application and research in dentistry
    • …
    corecore